Παρασκευή 13 Μαρτίου 2015

Αποκλίνουσα Σκέψη

 Το παρακάτω κείμενο αφορά μια ερώτηση που τέθηκε σε μια εξέταση Φυσικής στο πανεπιστήμιο της Κοπεγχάγης.
Περιγράψτε πως μπορούμε να μετρήσουμε το ύψος ενός ουρανοξύστη χρησιμοποιώντας ένα βαρόμετρο

Ένας φοιτητής απάντησε :

“Δένετε ένα μακρύ σπάγκο στο λαιμό του βαρόμετρου, και κατεβάζετε το βαρόμετρο από την ταράτσα του ουρανοξύστη στο έδαφος. Το μήκος του νήματος συν το μήκος του βαρομέτρου θα είναι ίσο με το ύψος του κτιρίου.”
Αυτή η πρωτότυπη απάντηση, έκανε έξω φρενών τον εξεταστή έτσι ώστε ο φοιτητής κόπηκε αμέσως. Ο φοιτητής προσέφυγε στις αρχές του πανεπιστημίου διαμαρτυρόμενος ότι η απάντησή του ήταν αναμφίβολα σωστή, και το πανεπιστήμιο όρισε έναν ανεξάρτητο εξεταστή να διερευνήσει την υπόθεση. Ο διαιτητής αυτός έκρινε ότι η απάντηση ήταν πράγματι σωστή, αλλά δεν έδειχνε καμιά αξιοσημείωτη γνώση της φυσικής.

Για να διαλευκανθεί τελείως το θέμα αποφασίστηκε να καλέσουν το σπουδαστή και να του αφήσουν έξι λεπτά μέσα στα οποία αυτός έπρεπε να δώσει μια προφορική απάντηση που να δείχνει μια εξοικείωση με τη φυσική σκέψη.
Για πέντε λεπτά αυτός παρέμεινε σιωπηλός, βυθισμένος σε σκέψεις. Ο εξεταστής του θύμισε ότι ο χρόνος τελείωνε, και ο σπουδαστής απάντησε ότι ήδη είχε στο μυαλό του αρκετές συναφείς απαντήσεις αλλά δεν μπορούσε να αποφασίσει ποια να χρησιμοποιήσει. Στην προτροπή να βιαστεί, ο σπουδαστής απάντησε ως εξής:

” Κατ’ αρχήν μπορείς να ανεβάσεις το βαρόμετρο στην κορυφή του ουρανοξύστη, να το αφήσεις να πέσει στο δρόμο και να μετρήσεις το χρόνο που κάνει να φτάσει στο έδαφος. Το ύψος του κτιρίου μπορεί τότε να βρεθεί από τον τύπο H=gt2/2. Αλλά αλίμονο στο βαρόμετρο.”

“Εναλλακτικά, μια ηλιόλουστη μέρα, μπορείς να βγάλεις το βαρόμετρο έξω, να μετρήσείς το μήκος του, και μετά να το στήσεις όρθιο στο έδαφος και να μετρήσεις το μήκος της σκιάς του. Να μετρήσεις ύστερα το μήκος της σκιάς του ουρανοξύστη, και τέλος με απλή αριθμητική αναλογία να βρεις το πραγματικό ύψος του ουρανοξύστη.”

“Αλλά αν θέλεις να κάνεις μια πραγματικά επιστημονική δουλειά, θα μπορούσες να δέσεις ένα μικρού μήκους νήμα στο βαρόμετρο και να το βάλεις σε ταλάντωση σαν εκκρεμές, πρώτα στο έδαφος και μετά στην ταράτσα του ουρανοξύστη. Το ύψος θα μπορούσε στη συνέχεια να βρεθεί μετρώντας και συγκρίνοντας τις δυο περιόδους οι οποίες είναι αντιστρόφως ανάλογες των τετραγωνικών ριζών των επιταχύνσεων της βαρύτητας g, στο έδαφος και στο ύψος του ουρανοξύστη. Η επιτάχυνση της βαρύτητας εξαρτάται με τη σειρά της από το ύψος από την επιφάνεια της γης και συνεπώς γνωρίζοντας την επιτάχυνση της βαρύτητας στην ταράτσα βρίσκουμε το ύψος.”

“Ή αν ο ουρανοξύστης διαθέτει μια εξωτερική σκάλα κινδύνου θα μπορούσες να ανεβείς τη σκάλα και να χρησιμοποιείς το βαρόμετρο ως μονάδα μέτρησης για να μετρήσεις το ύψος κάθε σκαλοπατιού. Πολλαπλασιάζεις τα σκαλιά με το ύψος του βαρόμετρου και έχεις το ύψος του κτιρίου.

” Αν απλώς βαριόσουν, και ήθελες να χρησιμοποιήσεις το βαρόμετρο με ορθόδοξο τρόπο, μπορούσες να μετρήσεις την ατμοσφαιρική πίεση στην ταράτσα και στο έδαφος και να μετατρέψεις την διαφορά των milibars σε αντίστοιχη διαφορά σε μέτρα.”

“Αλλά επειδή ως φοιτητές συνεχώς παροτρυνόμαστε να ασκούμε την ανεξαρτησία του μυαλού και να εφαρμόζουμε επιστημονικές μεθόδους, αναμφίβολα ο καλύτερος τρόπος θα ήταν, να χτυπήσουμε την πόρτα του θυρωρού και να του πούμε: ‘ Αν θα σου άρεσε να έχεις ένα ωραίο καινούριο βαρόμετρο, θα σου χαρίσω αυτό αν μου πεις το ύψος του ουρανοξύστη’.
Ο σπουδαστής αυτός ήταν ο NIELS BOHR ο μόνος Δανός που κέρδισε το βραβείο Nobel της Φυσικής, o οποίος περιέγραψε τη δομή του ατόμου και έθεσε τη βάση της κβαντομηχανικής.

Ο τρόπος που σκέφτηκε ο φοιτητής, στη θεωρία της νοημοσύνης καλείται «Αποκλίνουσα Σκέψη».
Τις περισσότερες φορές (και οι περισσότεροι άνθρωποι) όταν αντιμετωπίζουμε ένα πρόβλημα ψάχνουμε μια λύση που μας παγιδεύει στην αρχική του διατύπωση.
Για παράδειγμα στην ερώτηση: «Πως μπορούμε να αντιμετωπίσουμε την οικονομική κρίση στην Ελλάδα;» Οι απαντήσεις μπορούν να είναι πολύ περισσότερες απ’ όσες φανταζόμαστε, αρκεί πρώτα να κατανοήσουμε τη φύση της ερώτησης (τη φύση της κρίσης). Όπως το βαρόμετρο σε παγιδεύει στη λύση μέσω της μέτρησης της πίεσης, έτσι και η «οικονομική κρίση» σε παγιδεύει στη λύση μέσω της οικονομίας.

Ένα άλλο παράδειγμα αυτοπεριορισμού της σκέψης είναι το ερώτημα που έχει να κάνει με τη χρήση ενός συνδετήρα.
Είναι απλό: «Με πόσους τρόπους μπορούμε να χρησιμοποιήσουμε ένα συνδετήρα;»
Σε αυτό το ερώτημα οι περισσότεροι άνθρωποι βρίσκουν πέντε έως είκοσι τρόπους. Κάποιοι όμως (ειδικά τα παιδιά) μπορούν να βρουν έως και χίλιους πεντακόσιους τρόπους, μπορεί και περισσότερους. Για παράδειγμα η απάντηση μπορεί να ξεκινήσει ως εξής: «Ο συνδετήρας είναι φτιαγμένος από φελιζόλ και έχει ύψος 800 μέτρα….»

Αν ξανακοιτάξετε το πρόβλημα θα δείτε ότι πουθενά δεν αναφέρεται ότι ο συνδετήρας είναι ο οικείος σε όλους συνδετήρας γραφείου. Ούτε το μέγεθος του αναφέρεται ούτε το υλικό κατασκευής (ένας χρυσός συνδετήρας φοριέται και ως κόσμημα, ένας συνδετήρας από καθαρό ουράνιο ως όπλο μαζικής καταστροφής). Όταν, μάλιστα, έγινε μια σχετική έρευνα σε σχολεία βγήκαν τα εξής πορίσματα:
Τα παιδιά ηλικίας 5-8 μπορούσαν να δώσουν απεριόριστες απαντήσεις. Τα ίδια παιδιά, μετά από λίγα χρόνια εκπαίδευσης, έδιναν πολύ λιγότερες από τις μισές. Και ως ενήλικες είχαν τις συνηθισμένες 5-10 λύσεις.
Αυτό δεν μας προκαλεί εντύπωση, αφού -όπως είχε πει κάποιος συγγραφέας του οποίου το όνομα δε θυμάμαι: «Εκπαίδευση είναι ο τρόπος να δημιουργείς έναν ηλίθιο ενήλικα από ένα πανέξυπνο παιδί».

Συμπέρασμα:
Όλα τα προβλήματα μπορούν να λυθούν με πολύ περισσότερους τρόπους από αυτούς που θεωρούμε ως τους μόνους δυνατούς, αρκεί να επανεξετάσουμε το ερώτημα και να σκεφτούμε κάπως πιο… ελεύθερα.

Δεν υπάρχουν σχόλια :

Δημοσίευση σχολίου