Παρασκευή 14 Φεβρουαρίου 2014

Fractal

Σχετική εικόναFractal, η Κατακερματισμένη Φύση: Το 1967 ο Μπενουά Μάντελμπροτ έθεσε την φαινομενικά απλοϊκή ερώτηση: «πόσο μεγάλη είναι η ακτογραμμή της Βρετανίας;». Υστερα από σύντομη σκέψη διαπιστώνει κανείς ότι η ερώτηση δεν είναι τόσο απλοϊκή όσο φαίνεται εξαρχής, αφού η απάντηση εξαρτάται από την κλίμακα του χάρτη που χρησιμοποιούμε για να μετρήσουμε την ακτογραμμή! Μπορεί να Εφυγε από τη ζωή ο Μπενουά Μάντελμπροτ, αλλά άφησε πίσω του πολύτιμη κληρονομιά, τη γεωμετρία μορφοκλασματικής μορφής που χρησιμοποιείται από την αστρονομία και τη βιολογία ως τα χρηματιστήρια αξιών.

Οσο πιο πολλές λεπτομέρειες έχει ο χάρτης τόσο πιο μεγάλη τιμή για την ακτογραμμή προκύπτει. Ο λόγος αυτής της παράξενης ιδιότητας είναι ότι η ακτογραμμή είναι ένα γεωμετρικό αντικείμενο μορφοκλασματικής μορφής ή όπως συνήθως λέγεται, φράκταλ. Ο Μάντελμπροτ είναι εκείνος που εισήγαγε τόσο τον όρο όσο και τη θεωρία των φράκταλ στην επιστήμη, και για τον λόγο αυτόν θεωρείται ένας από τους σπουδαιότερους μαθηματικούς των τελευταίων 50 ετών. Ο θάνατός του  αποτελεί καλή ευκαιρία για να γνωρίσουν το έργο του ακόμη και εκείνοι που δεν έχουν σχέση με τα μαθηματικά ή τις εφαρμογές τους.
Μετρώντας τα σύννεφα: Στη Γεωμετρία του σχολείου μαθαίνουμε για τις γραμμές, τους κύκλους, τα τετράγωνα, τους κύβους, τους κυλίνδρους και τις σφαίρες. Στη φύση όμως γύρω μας επικρατούν άλλου είδους σχήματα: τα σύννεφα, οι κεραυνοί, οι παγοκρύσταλλοι, τα σφουγγάρια και οι ακτογραμμές παρουσιάζουν μια πολυπλοκότητα που δεν μοιάζει καθόλου με τα απλά γεωμετρικά αντικείμενα της «κλασικής» Γεωμετρίας. Μερικοί μαθηματικοί στα τέλη του 19ου και στις αρχές του 20ου αιώνα είχαν επιχειρήσει να περιγράψουν μαθηματικά το σχήμα και τις ιδιότητες μιας άλλης κατηγορίας γεωμετρικών αντικειμένων, που χαρακτηρίζονται από μια ιδιότητα που ονομάζεται αυτο-ομοιότητα.

Τα αντικείμενα αυτού του είδους παρουσιάζουν την ίδια εικόνα όταν παίρνει κανείς ένα κομμάτι τους και το μεγεθύνει, έτσι ώστε να έχει τις ίδιες διαστάσεις με το αρχικό. Οι «καθιερωμένοι» μαθηματικοί εκείνης της εποχής αντιμετώπισαν με απαξίωση αυτές τις ιδέες, επειδή θεώρησαν ότι δεν έχουν κανενός είδους εφαρμογή στην καθημερινή ζωή. Ενας από τους «αιρετικούς» μάλιστα εκείνης της εποχής, ο Γάλλος Πολ Λεβί, αναγκάστηκε από τους συναδέλφους του στην Πολυτεχνική Σχολή στο Παρίσι να μη δίνει θέματα για διδακτορικό σε μεταπτυχιακούς φοιτητές, επειδή η κρατούσα αντίληψη ήταν ότι με τέτοιες ιδέες δεν θα έβρισκαν στη συνέχεια δουλειά.

Ο πρώτος μαθηματικός που πρότεινε την ιδέα ότι η γεωμετρία των αυτο-όμοιων σχημάτων έχει εφαρμογή στη φύση ήταν ο Μάντελμπροτ. Οπως γράφει στο πιο γνωστό βιβλίο του, Η μορφοκλασματική Γεωμετρία της Φύσης,
«Τα σύννεφα δεν είναι σφαίρες, τα βουνά δεν είναι κώνοι, οι ακτογραμμές δεν είναι κύκλοι και το γάβγισμα δεν είναι ομαλό ούτε η αστραπή ταξιδεύει σε ευθεία γραμμή».
Στην αρχή οι ιδέες του αντιμετωπίστηκαν με δυσπιστία από το επιστημονικό κατεστημένο, όχι μόνο επειδή ανέτρεπαν παράδοση 23 αιώνων, από την εποχή που ο Ευκλείδης είχε θέσει τα θεμέλια της Γεωμετρίας, αλλά και επειδή από τη θέση του στο κέντρο Τόμας Γουότσον δεν είχε εύκολη επαφή με φοιτητές, προπτυχιακούς και μεταπτυχιακούς. Στη συνέχεια όμως η εφαρμογή τους σε προβλήματα που εμφανίζονταν σε πολλούς διαφορετικούς κλάδους των επιστημών, από τη Βιολογία και τη Γεωλογία ως τα Οικονομικά και την Αστρονομία, συντέλεσε ώστε το έργο του να αναγνωριστεί παγκοσμίως και οι μέθοδοί του να χρησιμοποιούνται ευρύτατα πρακτικά σε όλες τις επιστήμες που στηρίζονται σε μαθηματικούς υπολογισμούς.

Η πιο γνωστή εφαρμογή των φράκταλ στο ευρύ κοινό είναι η μαθηματική περιγραφή διάφορων αντικειμένων ή σχημάτων της καθημερινής ζωής που παρουσιάζουν αυτοομοιότητα, όπως για παράδειγμα είναι ένα φύλλο φτέρης, ένα δέντρο ή ένα σφουγγάρι. Η ενδιαφέρουσα μάλιστα ιδιότητα αυτών των γεωμετρικών σχημάτων να έχουν γεωμετρική διάσταση κλασματική και όχι ακέραια έδωσε την ιδέα στον Μάντελμπροτ το 1975 να επινοήσει τον όρο φράκταλ.

Για παράδειγμα, το μορφοκλασματικό σύνολο που μοιάζει με φύλλο φτέρης έχει διάσταση 1,8, που το κατατάσσει μεταξύ της γραμμής, που έχει γεωμετρική διάσταση 1, και της επιφάνειας, που έχει γεωμετρική διάσταση 2. Είναι δηλαδή κάτι «ανάμεσα» σε γραμμή και επιφάνεια, χωρίς να είναι κανένα από τα δύο!

Το παράδοξο του Ολμπερς: Σημαντικότερη ίσως εφαρμογή της θεωρίας του Μάντελμπροτ είναι η γενίκευση της Στατιστικής Φυσικής, μέσω του συνδυασμού της με τις ιδέες του Λεβί, του οποίου υπήρξε μαθητής κατά το διάστημα 1945-47. Η «σύνθετη» αυτή θεωρία έχει εφαρμογές τόσο στις φυσικές επιστήμες όσο και στις οικονομικές. Ο ίδιος ο Μάντελμπροτ απέδειξε ότι το παράδοξο του Ολμπερς μπορεί να ερμηνευθεί μόνο με την υπόθεση ότι τα άστρα έχουν κατανομή φράκταλ στο Σύμπαν, χωρίς να χρειαστεί η υπόθεση της Μεγάλης Εκρηξης.

Το παράδοξο του Ολμπερς αναφέρεται στην καθημερινή παρατήρηση ότι το βράδυ ο ουρανός είναι σκοτεινός, ενώ απλοί μαθηματικοί υπολογισμοί δείχνουν ότι θα έπρεπε να είναι φωτεινός, εξαιτίας του φωτός των μακρινών αστεριών. Η κρατούσα σήμερα ερμηνεία είναι πως ο ουρανός είναι σκοτεινός επειδή σε μας φτάνει το φως μόνο εκείνων των αστεριών που είναι σε απόσταση μικρότερη από 13,7 δισεκατομμύρια έτη φωτός, όση δηλαδή είναι η ηλικία του Σύμπαντος μετά τη Μεγάλη Εκρηξη.

Ο ίδιος ο Μάντελμπροτ όμως έδειξε το 1974 ότι το «παράδοξο» αυτό μπορεί να ερμηνευθεί και μόνο με την υπόθεση ότι τα αστέρια είναι κατανεμημένα σε ένα σχήμα φράκταλ στο Σύμπαν. Τέλος, αξίζει να σημειωθεί ότι η θεωρία των Μάντελμπροτ-Λεβί χρησιμοποιείται σήμερα από χρηματοοικονομικούς οίκους για την πρόβλεψη της εξέλιξης των τιμών στα διάφορα χρηματιστήρια αξιών και εμπορευμάτων.

Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο βαθμό μεγέθυνσης, κι έτσι συχνά αναφέρεται σαν «απείρως περίπλοκο». Το φράκταλ παρουσιάζεται ως «μαγική εικόνα» που όσες φορές και να μεγεθυνθεί οποιοδήποτε τμήμα του θα συνεχίζει να παρουσιάζει ένα εξίσου περίπλοκο σχέδιο με μερική ή ολική επανάληψη του αρχικού. Χαρακτηριστικό επομένως των φράκταλ είναι η λεγόμενη αυτο-ομοιότητα (self-similarity) σε κάποιες δομές τους, η οποία εμφανίζεται σε διαφορετικά επίπεδα μεγέθυνσης.

Τα φράκταλ σε πολλές περιπτώσεις μπορεί να προκύψουν από τύπο που δηλώνει αριθμητική, μαθηματική ή λογική επαναληπτική διαδικασία ή συνδυασμό αυτών. Η πιο χαρακτηριστική ιδιότητα των φράκταλ είναι ότι είναι γενικά περίπλοκα ως προς τη μορφή τους, δηλαδή εμφανίζουν ανωμαλίες στη μορφή σε σχέση με τα συμβατικά γεωμετρικά σχήματα. Κατά συνέπεια δεν είναι αντικείμενα τα οποία μπορούν να οριστούν με τη βοήθεια της ευκλείδειας γεωμετρίας. Αυτό υποδεικνύεται από το ότι τα φράκταλ, όπως έχει αναφερθεί παραπάνω, έχουν λεπτομέρειες, οι οποίες όμως γίνονται ορατές μόνο μετά από μεγέθυνσή τους σε κάποια κλίμακα.

Για να γίνει αντιληπτός αυτός ο διαχωρισμός των φράκταλ σε σχέση με την ευκλείδεια γεωμετρία, αναφέρουμε ότι, αν μεγεθύνουμε κάποιο αντικείμενο το οποίο μπορεί να οριστεί με την ευκλείδεια γεωμετρία, παραδείγματος χάριν την περιφέρεια μιας έλλειψης, αυτή μετά από αλλεπάλληλες μεγεθύνσεις θα εμφανίζεται απλά ως ευθύγραμμο τμήμα. Η συμβατική ιδέα της καμπυλότητας η οποία αντιπροσωπεύει το αντίστροφο της ακτίνας ενός προσεγγίζοντος κύκλου, δεν μπορεί ωφέλιμα να ισχύσει στα φράκταλ επειδή αυτή εξαφανίζεται κατά τη μεγέθυνση. Αντίθετα, σε ένα φράκταλ, θα εμφανίζονται κατόπιν μεγεθύνσεων λεπτομέρειες που δεν ήταν ορατές σε μικρότερη κλίμακα μεγέθυνσης.

Φράκταλ απαντώνται και στη φύση, χωρίς όμως να υπάρχει άπειρη λεπτομέρεια στη μεγέθυνση όπως στα φράκταλ που προκύπτουν από μαθηματικές σχέσεις. Ως παραδείγματα φράκταλ στη φύση, αναφέρονται το σχέδιο των νιφάδων του χιονιού, τα φύλλα των φυτών ή οι διακλαδώσεις των αιμοφόρων αγγείων.
Ο όρος fractals, όπως ήδη αναφέρθηκε, προτάθηκε από τον Μπενουά Μάντελμπροτ (Benoît Mandelbrot) το 1975 και προέρχεται από τη λατινική λέξη fractus, που σημαίνει «σπασμένος» ή «κατακερματισμένος».

Για να κατανοήσουμε καλύτερα την αναγκαιότητα εισαγωγής των φράκταλ αναφέρουμε το εξής παράδειγμα: Η περίμετρος ενός νησιού εννοείται ότι είναι ορισμένη. Ωστόσο, αν χρησιμοποιήσουμε ακρίβεια ενός μέτρου για να την μετρήσουμε, θα την βρούμε μικρότερη από ότι πραγματικά είναι γιατί δεν θα μπορέσουμε να μετρήσουμε τις κοιλότητες που είναι μικρότερες του ενός μέτρου. Αν μετρήσουμε με ακρίβεια ενός εκατοστού, πάλι θα χάσουμε ορισμένες κοιλότητες. Έτσι καταλήγουμε σε απειροστά μικρή μονάδα μέτρησης και η περίμετρος του νησιού θα γίνει άπειρη. Η επιφάνεια όμως του νησιού, η έκτασή του δηλαδή, είναι ορισμένη. Το παράδοξο αυτό, το οποίο η Ευκλείδεια Γεωμετρία αδυνατεί να εξηγήσει, αντιμετωπίζεται με τα φράκταλ.

Ο Μπενουά Μάντελμπροτ ήταν ένας από τους πιο κοσμοπολίτες επιστήμονες. Ηταν εβραίος λιθουανικής καταγωγής αλλά είχε γεννηθεί το 1924 στην Πολωνία. Πριν από τον Β΄ Παγκόσμιο Πόλεμο οι γονείς του μετανάστευσαν στη Γαλλία, όπου ζούσε ο θείος του, διάσημος μαθηματικός και αυτός.Ο Μάντελμπροτ σπούδασε στη Γαλλία και έπειτα από επισκέψεις σε διάφορα ερευνητικά κέντρα και πανεπιστήμια,προσελήφθη στο ερευνητικό κέντρο Τόμας Γουότσον της ΙΒΜ στη Νέα Υόρκη.Επειτα από 35 χρόνια εργασίας στην ΙΒΜ μετακινήθηκε στο Πανεπιστήμιο Γέιλ,όπου και τελείωσε την καριέρα του ως καθηγητής στην έδρα Στέρλινγκ. Πέθανε στις 14 Οκτωβρίου 2010 από καρκίνο στο πάγκρεας.

Εξαιτίας των διαδοχικών μετακινήσεων του Μάντελμπροτ το όνομά του προφέρεται με διαφορετικούς τρόπους, ανάλογα με τη γλώσσα της χώρας όπου ζούσε. Συνήθως το μικρό του όνομα αναφερόταν με τη γαλλική προφορά ενώ το επώνυμο με τη γερμανική, όπου και σημαίνει «ψωμί με αμύγδαλα».

Δεν υπάρχουν σχόλια :

Δημοσίευση σχολίου